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Abstract—With rapid growth of LTE network and Voice-
over-LTE(VoLTE), detecting and preventing security threats
like Denial of Service attack becomes a necessary and urgent
requirement. VoLTE is an voice solution based on Internet
Protocol and 4G LTE technology, at the same time expos-
ing many vulnerabilities when using packet-switched network.
There are many heavy weighted detection systems using content
analysis, while high demands of computing resource constraint
their practical use. In this paper, we propose a lightweight
detection scheme for VoLTE network security, based on analysis
of data traffic flow. To optimize parameters in our scheme,
we formulate a Bayesian game model. Bayesian game has the
features of incomplete information and asymmetry, similar to
practical attack-defense model. Besides, The dynamic Bayesian
game is more realistic, since both sides can update believes about
their opponents. Simulation results provide some guidances on
parameter selection, as well as verifying the superiority of our
scheme.

I. INTRODUCTION

As the dedicated voice solution for LTE, VoLTE is an
implementation of Voice-over-IP, which uses packet-switched
networks for data transmission. Based on Internet technology,
VoLTE provides obvious benefits over its former generations
2G/3G call service, in respects of higher Quality of Service
(QoS), larger call capacity, shorter start-up time and better
interoperability [1].

However, as VoLTE shifts circuit-switched scheme to
packet-switched, which provides a higher openness to oper-
ating system, there are new security threats to both consumers
and operators. So far there’s no effective verification for
authenticity of VoLTE signal and data. Major attacks, such
as Denial of Service (DoS) attack, free data attack and over-
charging attack, are caused by injecting purposive or useless
packets into control plane or data plane [2]. Besides, signaling
bearer in control plane of VoLTE has the highest priority level
whereas data bearer (e.g. web searching, video streaming)
has the lowest one; and voice bearer has guaranteed bit rate,
whereas data bearer belongs to the non-guaranteed bit rate
category. All these privileges aims at providing VoLTE with
higher QoS. However the high QoS may restrain normal data
access [3], making these attacks more destructive and easier
to implement.

Actually, the security vulnerabilities of VoLTE essential-
ly lie in the lack of verification of transmitted data. So
a thorough solution to these threats is an authentication
subsystem for transmission details, such as source address,
destination address, protocol type. Nevertheless, content based

verification requires real-time monitoring and analysis, which
brings challenges of high demand for computing resources
[4]. Even if it’s performable, the high cost will still prevent it
from practical use, especially for some lightweight distributed
systems. Meanwhile, the common feature of these attacks is
a large amount of data traffic, which provides another clue to
lightweight detection.

Besides, there’s no effective approach to optimize and
evaluate detection schemes so far. Recently, game theory has
been successful in analysis of network security, especially
in attack defense models. A defense system usually involves
multiple types of participant, which cooperate with or oppose
to each other. Game theory helps study the action and rela-
tionship of cooperators or opponents. In particular, Bayesian
game formulates a partially rational model where players only
have bounded knowledge. This incomplete information feature
accurately describes the reality in VoLTE networks.

To address these challenges, we propose a lightweight
Traffic Based Detection System (TBDS). Our contributions
can be summarized as follow:

1) To balance the requirement of detection accuracy and
cost sensitiveness in VoLTE, we propose a TBDS to
detect attacks by monitoring peak value and variation
trend of data volume.

2) To evaluate the TBDS, we formulate a Bayesian game
model for a practical VoLTE network. We theoretically
analyse the equilibrium in static game model, and im-
plement the simulation on dynamic game model.

3) Based on various simulation results, we verify the ad-
vantages of our detection system, and give advices on
threshold settings.

The remainder of the paper is organized as follows. In
section II, we introduce some previous works in this field and
discuss how our work differs from other related works. In
section III, we show the detail of our proposed Traffic Based
Detection System to help detect attacks in VoLTE network.
We present the game theoretical approach in section IV. The
evaluations of our scheme are shown in section V. The last
section draws a conclusion of our work.

II. RELATED WORK

A. Vulnerabilities in VoLTE

In traditional circuit-switched voice solution, both signal
and data are generated and managed within chipset, which
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Fig. 1: Structure of practical VoLTE network.

protects transmission from being interfered. However, Li C
Y et al. [1] found the openness of VoLTE control-plane to
software (e.g. operating system and apps) makes it defective
to attacks. As long as attackers get the access authority, they
can inject data packets into signaling bearers to implement
DoS, shutting down ongoing data service at the victim. And
high QoS of VoLTE makes DoS attacks more harmful.

Guan-Hua Tu et al. [5] pointed out a threat that VoLTE
signaling may be manipulated maliciously. For instant, the
handshake process in Session Initiation Protocol (SIP) won’t
finish until the caller send SIP UPDATE, a confirming message
[6]. A malicious caller may send CANCELING instead to
launch a silent call attack. Such successive attack will speed
up consumption of power or even cause call blocking, while
the victim has no idea about it.

Accordingly, researchers proposed some countermeasures,
such as stricter routing regulation, verification and autho-
rization, improving transmission protocols, chipset access en-
hancement. However, many of these remedies are generally
put forward with no implementation detail, or even not feasible
due to the limitation of market and policies.

B. Game Theroy in Network Security

It is widely investigated that a large number of game models
have been applied to evaluate security issues in network (e.g.
repeated game, evolutionary game, stackelberg game) [7].
All these games can be categorize into static/dynamic, com-
plete/incomplete information, cooperative/non-cooperative,
symmetric/asymmetric, zero-sum/non-zero-sum, simultane-
ous/sequential, finitely/infinitely, etc. [8]

Liu Y et al. [9] proposed a Bayesian game approach for In-
trusion Detection System in Ad Hoc Networks. The Bayesian
game model is used for a dynamic process here, where the
defender continually updates belief about the opponent.

III. TRAFFIC BASED ATTACK DETECTION MODEL

In this section, we propose a lightweight Traffic Based
Detection System (TBDS) as a subsystem in VoLTE network.
The peak value and trend feature of data traffic are used to
analyse the probability of attack , then optimize the parameters
in detection system. The TBDS and model of VoLTE network
are illustrated in Session III.A and III.B.

TABLE I: Notations in TBDS
t0 length of one detection period

M number of sampling point in one detection period

V peak traffic value of a practical bearer

Vn peak traffic value of a normal bearer

Va peak traffic value of a attacking bearer

V0 threshold of peak value

F feature of traffic curve of a practical bearer

Fn feature of traffic curve of a normal bearer

Fa feature of traffic curve of a attacking bearer

F0 threshold of curve feature

A. Traffic Based Detection System

The TBDS exploits an lightweight traffic based scheme,
which analyses the peak value and trend feature of traffic to
distinguish attacks. The information of traffic is much less
than that of content, which assures the lightweight feature of
TBDS.

Notations in the TBDS are explained in TABLE I. In order
to realize the detection process, we simulate practical curves of
traffic volume for a period of time. These curves are based on
the attacker’s action. The attacker will launch an attack with
a probability p. If there’s an attack from the attacker, traffic
volume of corresponding connection V will exceed normal
value Vn. Each curve is separated into sequential stages and
the TBDS detects attacks based on data volume in each stage.

In our simulation, we assume that the traffic volume of
a normal bearer is stable and restrained to a limited range.
Besides, we also assume that the traffic volume will increase
linearly when there’s an attack. Thus the TBDS applies linear
fitting to get the slope k of the volume curve. The slope
denotes the increment speed of traffic volume, and the slope of
an attack bearer will obviously larger than that of a normal one.
Researches [1] [12] have shown that in normal scenario, the
data volume of a VoLTE bearer are very limited, typical 20-60
kbps, while an attack would make a sudden drastic fluctuation.
As long as the detection interval is short enough, we can
always regard the growth as linear. Thus attack detection via
analysis of peak value and trend feature is feasible. There are
two criterions for attack detection:

1) Peak value V exceeds a given threshold V0;
2) Feature F exceed a given threshold F0. F is a feature

vector generated by fitting of the traffic volume curve.

Only if both two criterions are satisfied, will the bearer
be judged as attacking. The threshold V0 is decided by peak
value Vn and Va, and the threshold F0 is decided by features
Fn and Fa. Specifically, we designate slope k as feature F.
After detection process, the TBDS will take corresponding
measurements to maximize its payoff(i.e. shut down attacking
bearers).

The detection system works as Algorithm 1:



Algorithm 1 Detection Procedure

Input:
V (t), continuous traffic volume of the bearer, 0 < t < t0;
V0, threshold of traffic peak value;
k0, threshold of traffic curve slope;
M, number of sampling point;

Output:
T, estimated bearer type(T(attacking) = 1, T(normal) = 0);

1: Get sampling value of traffic volume:
V = V (t)

∑M
i=1 δ(t −

t0
M ), Vi is a component of V, 1 ≤

i ≤M .
2: T = 0, N = length(V);
3: Vpeak = Max(Vi)
4: if Vpeak > V0 then
5: Vavg = 1

N

∑M
i=1 Vi

6: k =
∑M

i=1(Vi−Vavg)(i−M
2 )∑M

i=1(i−
M
2 )

7: if k > k0 then
8: T = 1;
9: end if

10: end if
11: return T

Fig. 2: Structure of the attack defense system.

B. TBDS in VoLTE Network

We merge the TBDS into a VoLTE network model to
optimize the parameters in it. In consideration of the VoLTE
network structure, we suggest the operators to add the TBDS
to 4G gateway, since operators have better control on tech-
nology and operation procedure. Besides, 4G gateway is a
critical node for routing and forwarding in whole network [10],
and more capable of counting data traffic. It’s also feasible
to applied this TBDS to IP Multimedia Subsystem (IMS)
core in VoLTE network, since IMS is a standard architecture
for delivering IP multimedia services [11]. All signaling and
media traffic in VoLTE must be processed by IMS core.
The structure of whole transmission system with detection
subsystem in 4G gateway is shown in Fig.1.

Consider a VoLTE network including N+2 nodes. There are
N regular nodes which represent normal terminal equipments,
a defending node for TBDS and an attacking node for the
potential malicious terminal. The relationship among these
nodes are illustrated in Fig.2.

The potential malicious terminal can launch attacks toward

any normal terminal through a VoLTE bearer. The bearers are
dedicated connections for VoLTE, represented by bidirectional
arrows in Fig.2. There are two types of bearer: attacking bearer
(striped arrow) and normal bearer (blank arrow).

The TBDS plays a connective role in VoLTE network, since
each bearer from the potential malicious terminal must go
under the monitoring of the TBDS.

The TBDS can also be used as lightweight module in a hy-
bird detection system. Compared to content based heavyweight
detection schemes, which verify details in VoLTE packets such
as address, port number and transmission protocol [4], TBDS
achieves a lower hardware requirement with the side-effect
of a lower accuracy. Considering the rapid growth of VoLTE
traffic and operators’ preference for a lower cost, TBDS has
a advantage over those content based algorithms.

IV. BAYESIAN GAME MODEL

We propose to use Bayesian game model in evaluation
of VoLTE attack-defense system. Both static and dynamic
Bayesian game are used here: static model to analyse the
equilibrium and dynamic model to simulate the game evolving
process. The advantages of Bayesian game for this attack-
defense model are:

1) Non-cooperation: Bayesian game model can be applied
to a pair of opponents;

2) Incomplete information: Bayesian game simulates the
scenario where each side has partial information about
the opposite;

3) Dynamics: dynamic Bayesian game reflects the dynamic
update process;

4) Asymmetry: different characteristics of attacker and de-
fender can be represented by parameter setting.

All these features are in accord with the a practical attack-
defense system.

A. Static Bayesian Game Model

In static Bayesian game, we establish a incomplete informa-
tion game model [8], where node B (defending node) assumes
that node A (attacking node) has a prior probability µ to
be malicious, and node A assumes that node B has a prior
probability ν to be defensive. This assumption bases on the
fact that both nodes don’t know the exact type of the opposite
side. There’s a nature node W to represent the initial state of
node A and B. In order to analyse the payoffs, we use some
notations to represent parameters in game model as illustrated
in TABLE II.

When the strategy is (Attack, Defend), the probability of
a successful attack is (1 − Pd), and probability of an attack
failure is Pd. Thus the gain of node A is (1−Pd)Ba−PdLa,
and we remove the cost Ca to get the overall payoff. Node
B’s gain is PdBd + (Pd − 1)Ld, and we remove the cost Cd

to get node B’s payoff.
When the strategy is (Not attack, Defend), node A’s payoff

is 0. Node B has a probability of Pf to make a false alarm,
which costs node B an additional loss, -PfBd.



TABLE II: Notations in Bayesian Game
µ expected value of node A being malicious

ν expected value of node B being defensive

p conditional attack probability of a malicious node

q conditional defense probability of a defensive node

Pd true positive rate of TBDS

Pf false positive rate of TBDS

Ba gain of a successful defense

Bd gain of a successful attack

La loss of a failed attack (being successfully defended)

Ld loss of being attacked without successful defense

Ca cost of an attack

Cd cost of a defense

TABLE III: Payoffs Matrix
Payoff of

Attacker\Defender
Defend Not defend

Attack
(1− Pd)Ba − PdLa − Ca,

PdBd + (Pd − 1)Ld − Cd

Ba − Ca,

−Ld

Not Attack
0,

-PfBd − Cd

0,

0

When the strategy is (Attack, Not defend), node A will
successfully launch the attack to get a gain of Ba, and node
B will get a loss of Ld.

When the strategy is (Not attack, Not defend), both sides
will have no gain or cost. Thus the payoff on both sides is
0. The payoffs in above four situations are summarized in
TABLE III.

Given the payoffs, we can analyse the Bayesian Nash
Equilibrium (BNE), provided µ and ν are common prior
information. The analysis is based on categories of node A’s
strategies:

1) Node A launches an attack as long as it’s malicious. In
this case, node B’s expected payoffs of Defend ED and
Not defend END are

ED =µ(PdBds + (Pd − 1)Ld − Cd)+

(1− µ)(−PfBds − Cd),

END = µ(−Ld) + (1− µ)(0) = −µLd.

Let
ED = END,

, and we get the focal point of node B is

µ0 =
PfBd + Cd

Pd(Bd + Ld) + PfBd
.

Thus, node B’s strategy is (Defend if defensive and µ >
µ0, Not defend if regular or µ < µ0). But if µ > µ0,
node A’s dominant strategy is Not attack because any
attack will probably be detected. In a word, ((Attack if
malicious, Not attack if regular), Not defend) is a BNE
when µ < µ0.

2) Node A don’t attack even if it’s malicious. In this case,
the node B’s dominant strategy is always Not defend.
Then Node A’s dominant strategy switches to Attack if
it’s malicious. Thus, this is not a BNE.

3) Node A launches an attack with a probability p if it’s
malicious. When µ > µ0, there’s no pure strategy BNE
as we discussed above. We can set conditional attack rate
p and conditional defend rate q as illustrated in TABLE
II to get a mixed BNE. Then node A’s payoff is

EA = µνq((1−Pd)Ba−PdLa−Ca)+µ(1−νq)(Ba−Ca),

ENA = 0.

And node B’s payoff is:
ED =µp(PdBd + (Pd − 1)Ld − Cd)+

µ(1− p)(−PfBd − Cd)+

(1− µ)(−PfBd − Cd),

(1)

END = −µpLd. (2)

The stable state requires that there’s no difference be-
tween payoffs of Attack and Not attack, Defend and Not
defend:

EA = ENA,

ED = END,

then we get

p0 =
PfBd + Cd

(Pd(Bd + Ld) + PfBd)µ
, (3)

q0 =
Ba − Ca

Pd(Ba + La)ν
. (4)

In short, we find a mixed BNE strategy when µ > µ0,
((Attack with probability p0 if malicious, Not attack if regular),
Defend with probability q0 if defensive, Not defendif regular).
We can also analyse the BNE based on the categories of node
B’s strategies, and the result is similar.

B. Dynamic Bayesian Game Model

The dynamic Bayesian game model is an extension of static
model, where we use repeated game to continually update the
belief of both sides about the opponents. The procedure and
main components is shown in Fig.3.

Deriving from Bayes rule [13], the update functions of node
A and B’s belief about opponents are

µ(Ta|Aa, Ha0) =
µ(Ta, Ha)P (Aa|Ta, Ha0)∑

Tai
µ(Tai, Ha)P (Aa|Tai, Ha0)

, (5)

ν(Tb|Ab, Hb0) =
ν(Tb, Hb)P (Ab|Tb, Hb0)∑

Tbi
ν(Tbi, Hb)P (Ab|Tbi, Hb0)

. (6)

Here, µ is still expected value of node A being malicious;
Ta and Tai stand for node A’s type (malicious or regular); Aa

is the latest action of node A; Ha is the game history of node
A, Ha = (Aa1, Aa2, ..., AaN ) and Aai is node A’s action in
stage i, 1 < i < N ; P (Aa|Tai, Ha0) represents the probability
of node A plays action Aa, given the game history and node
type. ν is expected value of node B being defensive ; Tb and
Tbi stand for node B’s type (defensive or regular); Ab is the



latest action of node B; Hb is the game history of node B,
Hb = (Ab1, Ab2, ..., AbN ) and Abi is node B’s action in stage
i; P (Ab|Tbi, Hb0) represents the probability of node B plays
action Ab, given the game history and node type. Aai, Abi are
generated according to µ, ν, p, q, Aa(i−1) and Ab(i−1).

In each stage, node A and node B update their expectations
about their opponents and conditional attack/defense probabil-
ity, to get the inputs for next stage. The details of the dynamic
bayesian game are illustrated in Algorithm 2.

Algorithm 2 Procedure in One Game Stage i

Input:
µ, prior expected value of node A being malicious ;
ν, prior expected value of node B being defensive ;
p, conditional attack probability;
q, conditional defend probability;

Output:
µ’, posterior expected value of node A being malicious;
ν’, posterior expected value of node B being defensive;

1: Get actions Aa, Ad from µ, p,Aa(i−1) and ν, q, Ab(i−1):
Aa = (2−Aa(i−1) × rand() < µp),
Ad = (2−Ad(i−1) × rand() < νq).

2: Get updated expection of opponents µ, ν, as iluustrated in
Equation (5), (6).

3: Update conditional probability p and q, as iluustrated in
Equation (3), (4).

For an improved TBDS, thresholds V0,k0 will be automat-
ically adjusted to approach optimal detection strategy. We
propose a scheme to continually update V0,k0 according to
TBDS’s payoffs ED, END in Equation (1)(2). In a BNE
strategy, we get ED −END = 0, while in a no-BNE strategy
a larger value of |ED − END| indicates a bigger deviation
from BNE. Thus we propose to update V0 according to
(ED − END). Since k indicate the variation trend of traffic,
we propose to update k0 according to the variation trend
of deviation ((ED − END) − (E′D − E′ND)). The detail of
adjustment strategy is illustrated in Equation (7)(8).

V0 = V ′0 + δ1 × (ED − END) (7)
k0 = k′0 + δ2 × ((ED − END)− (E′D − E′ND)) (8)

V ′0 , k
′
0 are thresholds in previous game stage; E′D, E

′
ND are

TBDS’s payoffs in previous game stage; δ1, δ2 are pre-set fixed
parameters, which affect the adjustment speed.

V. SIMULATIONS

A. Simulation Settings

We set the number of game stages N = 50 for a balance of
accuracy and efficiency. Other parameters are set as follow:

µ0 = ν0 = 0.5,
p0 = q0 = 0.5,
Ba = Bd = 100,
La = Ld = 120,
Ca = 10, Cd = 50,
t0 = 1s,M = 50.

Fig. 3: Procedure of dynamic bayesian game.

(a) True positive rate Pd varies, Pf=0.001

(b) Pd = 0.918, false positive rate Pf varies

Fig. 4: The game process under different Pd and Pf .

Attack history Ha (shown in Fig.4(a)) is generated by belief
updating process and behaviour continuity of node A. Action
Attack is represented by Ha(i) = 1, Not attack is represented
by Ha(i) = 0, i represents the index of game stage.

B. Simulation results

According to static Bayesian game, there are two types of
equilibrium:

1) When µ < µ0, ((Attack if malicious, Not attack if
regular), Not defend).

2) When µ > µ0, ((Attack with probability p0 if malicious,
Not attack if regular), (Defend with probability q0 if
defensive, Not defend if regular))

Our simulation describes the second situation. There’s no pure
BNE when µ > µ0, while a mixed BNE is still achievable. In
mixed BNE, p and q reduce the actual attack and defense rate
to µp and νq. The mixed BNE is also related to Pd and Pf ,
which are in relation to V0 and k0 in TBDS.

The dynamic Bayesian game process is shown in Fig.4.
Since fluctuation of µ is extremely small after first ten game



(a) True positive rate (b) False positive rate

Fig. 5: The variation of detection rate and false positive rate
when V0 k0 change.

(a) Adjustment process of V0, k0 (b) Payoffs of node B

Fig. 6: The game process under different Pd and Pf .

stages in most situations, we use logarithmic x axis in Fig.4.
There’s a high degree of consistency between the curve shape
and attack history Ha, as illustrated in Fig.4(a):

1) During the 1st to 3rd stages and 5st to 7th stages, µ
goes down since there’s no attack.

2) At the 4th stage, µ goes up sharply because of an attack.
3) After the 8th stage, µ converges to 1 since there are

several continual attacks. µ won’t go down anymore,
even if there is a series of no-attack stages.

As illustrated in Fig.4(a), fluctuation of µ increases as Pd

decreases. In another word, the higher Pd is, the more stable µ
and the faster convergence TBDS can get. Effect of Pf follows
the opposite pattern as shown in Fig.4(b). Besides, increment
of Pf is more impactive that decline of Pd:

1) When 0 < Pf < 0.02, µ converges to 0, and a
higher Pf results in more severe fluctuation and slower
convergence.

2) When 0.02 < Pf < 0.2, µ fluctuates between 0 and 1,
which means there’s no convergence. In this case, the
TBDS can’t distinguish a malicious node reliably.

3) When Pf > 0.2, µ converges to 0, which means the
detection system totally fails.

As illustrated in Fig.5, selection of Pd and Pf is a tradeoff:
increment of Pd will go along with the increment of Pf . The
reason is as follow: increment of V0 increases the deviation
between threshold and normal volume (Va − V0), resulting
in higher Pd; increment of V0 also decreases the deviation
between threshold and attacking volume (Va − V0), resulting
in higher Pf . The same explanation can be applied to k0.

Since TBDS aims at maximizing its payoff, we need a
balanced combination of V0, k0 for higher Pd and lower Pf .
As illustrated in Fig.6(a), we simulate a dynamic adjustment
process for V0, k0. The TBDS starts to detect at different
pre-set of V0, k0, and converges to the same strategy. The
convergence point P0 (V0 = 73(kbps), k0 = 148(kbps/s))
describes the optimal strategy, where TBDS gets the maximin
payoff. Besides, Pd = 0.918, Pf=0.001 at point P . The curve
of dynamic game process under this optimal strategy is marked
by ‘*’ in Fig.4(b). Fig.6(b) shows the TBDS’s average payoff
during the adjustment process of V0, k0, where x axis and y
axis represent different pre-set start points.

We choose three start points for (V0, k0): no-attack point
Pn(50, 120), middle point Pm(85, 160) and attack point
Pa(120, 200). The curve from Pm approaches the convergence
point at the fastest speed and gets the highest payoff, since Pm

is the closet to P0. This give us a guidance on selection of
V0, k0, at the same time verifies the superiority of our scheme.

VI. CONCLUSION

The TBDS improves the security of VoLTE network in the
case of attackers being rational and incomplete information.
By increasing true positive rate and decreasing false positive
rate of detection, TBDS gets more accurate information about
attacker. The optimal choice of detection thresholds under
different scenarios can be obtained by simulation of dynamic
game model.
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